797 research outputs found

    Determination of the resistivity anisotropy of SrRuO3_{3} by measuring the planar Hall effect

    Full text link
    We have measured the planar Hall effect in epitaxial thin films of the itinerant ferromagnet SrRuO3 patterned with their current paths at different angles relative to the crystallographic axes. Based on the results, we have determined that SrRuO3 exhibits small resistivity anisotropy in the entire temperature range of our measurements (between 2 to 300 K); namely, both above and below its Curie temperature (~150 K). It means that in addition to anisotropy related to magnetism, the resistivity anisotropy of SrRuO3 has an intrinsic, nonmagnetic source. We have found that the two sources of anisotropy have competing effects

    Towards a wave--extraction method for numerical relativity: III. Analytical examples for the Beetle--Burko radiation scalar

    Full text link
    Beetle and Burko recently introduced a background--independent scalar curvature invariant for general relativity that carries information only about the gravitational radiation in generic spacetimes, in cases where such radiation is incontrovertibly defined. In this paper we adopt a formalism that only uses spatial data as they are used in numerical relativity and compute the Beetle--Burko radiation scalar for a number of analytical examples, specifically linearized Einstein--Rosen cylindrical waves, linearized quadrupole waves, the Kerr spacetime, Bowen--York initial data, and the Kasner spacetime. These examples illustrate how the Beetle--Burko radiation scalar can be used to examine the gravitational wave content of numerically generated spacetimes, and how it may provide a useful diagnostic for initial data sets.Comment: 23 pages, 4 figures; We changed the convention used, corrected typos, and expanded the discussio

    Late-time Kerr tails: generic and non-generic initial data sets, "up" modes, and superposition

    Full text link
    Three interrelated questions concerning Kerr spacetime late-time scalar-field tails are considered numerically, specifically the evolutions of generic and non-generic initial data sets, the excitation of "up" modes, and the resolution of an apparent paradox related to the superposition principle. We propose to generalize the Barack-Ori formula for the decay rate of any tail multipole given a generic initial data set, to the contribution of any initial multipole mode. Our proposal leads to a much simpler expression for the late-time power law index. Specifically, we propose that the late-time decay rate of the YmY_{\ell m} spherical harmonic multipole moment because of an initial YmY_{\ell' m} multipole is independent of the azimuthal number mm, and is given by tnt^{-n}, where n=++1n=\ell'+\ell+1 for <\ell<\ell' and n=++3n=\ell'+\ell+3 for \ell\ge\ell'. We also show explicitly that the angular symmetry group of a multipole does not determine its late-time decay rate.Comment: 12 pages, 13 figures, 4 tables. Substantially revised manuscrip

    Uniaxial magnetocrystalline anisotropy in CaRuO3{\rm CaRuO_3}

    Full text link
    CaRuO3{\rm CaRuO_3} is a paramagnetic metal and since its low temperature resistivity is described by ρ=ρ0+ATγ\rho=\rho_0+AT^\gamma with γ1.5\gamma \sim 1.5, it is also considered a non-Fermi liquid (NFL) metal. We have performed extensive magnetoresistance and Hall effect measurements of untwinned epitaxial films of CaRuO3{\rm CaRuO_3}. These measurements reveal that CaRuO3{\rm CaRuO_3} exhibits uniaxial magnetocrystalline anisotropy. In addition, the low-temperature NFL behavior is most effectively suppressed when a magnetic field is applied along the easy axis, suggesting that critical spin fluctuations, possibly due to proximity of a quantum critical phase transition, are related to the NFL behavior.Comment: 7 figure

    Paramagnetic anisotropic magnetoresistance in thin films of SrRuO3

    Full text link
    SrRuO3 is an itinerant ferromagnet and in its thin film form when grown on miscut SrTiO3 it has Tc of ~ 150 K and strong uniaxial anisotropy. We measured both the Hall effect and the magnetoresistance (MR) of the films as a function of the angle between the applied field and the normal to the films at temperatures above Tc. We extracted the extraordinary Hall effect that is proportional to the perpendicular component of the magnetization and thus the MR for each angle of the applied field could be correlated with the magnitude and orientation of the induced magnetization. We successfully fit the MR data with a second order magnetization expansion, which indicates large anisotropic MR in the paramagnetic state. The extremum values of resistivity are not obtained for currents parallel or perpendicular to the magnetization, probably due to the crystal symmetry.Comment: 3 pages, 3 figure
    corecore